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Exercises marked with (∗) will be used in later exercises or in the homeworks: you might
want to prioritize those.

1. The Cauchy step. Consider the quadratic model for f : Rn → R at x ∈ Rn given by

m(v) = f(x) + ⟨∇f(x), v⟩+ 1

2
⟨v,Hv⟩

for some symmetric matrix H ∈ Rn×n. We let ∆ > 0 be a radius and we let g = ∇f(x) denote
the gradient.

1. Remember that the Cauchy step is defined by

uC = −tC · g with tC ∈ argmin
0≤t≤ ∆

∥g∥

m(−t · g).

Show that the step size is given by

tC =

{
min

(
∥g∥2

⟨g,Hg⟩ ,
∆
∥g∥

)
if ⟨g,Hg⟩ > 0,

∆
∥g∥ otherwise.

2. Show that the Cauchy step leads to the following decrease in model value

m(0)−m(uC) ≥ 1

2
min

(
∆,

∥g∥
∥H∥

)
∥g∥.

2. (∗) Implementing the TR algorithm.

1. Implement the trust-region algorithm (see lecture notes). Use Hk = ∇2f(xk) for the
quadratic model and the Cauchy step to approximately solve the trust-region subproblem.

2. Consider the n-dimensional Rosenbrock function (see the definition at the end of the
exercise sheet). We provide files on Moodle to compute the function value, the gradient
and the Hessian. Run your implementation of the TR algorithm with n = 10 and x0 =
randn(n,1). You may choose parameters ∆̄ =

√
n, ∆0 = ∆̄/8 and ρ′ = 0.1.

3. Compare the performance with the line-search gradient descent algorithm. Both algo-
rithms should have approximately the same convergence speed; can you guess why? Can
you see pros and cons for TR with Cauchy steps rather than line-search gradient descent?
Soon we will see how to exploit second-order information better to greatly improve the
convergence speed.
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Multidimensional Rosenbrock function. We generalize the Rosenbrock function in n
dimensions as

f(x) =
n−1∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (1− xi)

2
]
.

The vector of ones is the unique global minimum (because the function is non-negative and is
zero if and only if all entries are ones). The gradient at x ∈ Rn is given by

∇f(x)i =


−2(1− x1)− 400x1(x2 − x2

1) if i = 1

200(xi − x2
i−1)− 2(1− xi)− 400xi(xi+1 − x2

i ) if 1 < i < n

200(xn − x2
n−1) if i = n.

The Hessian at x is a symmetric tridiagonal n × n matrix. The main diagonal and the first
diagonal above are given by

2 + 1200x2
1 − 400x2

202 + 1200x2
2 − 400x3

...
202 + 1200x2

n−1 − 400xn

200

 and

 −400x1
...

−400xn−1



respectively. In practice we never build the full matrix but solely compute matrix/vector
products. This can be done efficiently because the matrix is sparse.
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